Radiation transfer for
space applications

Rayference is an Earth Observation R&D company providing technical and scientific expertise in 1D and 3D radiative transfer modelling, both in the atmosphere and at the surface. This expertise is applied in areas such as inverse modelling for the retrieval of aerosol and surface properties from space observations, vicarious calibration (metrology), fundamental and thematic climate data record generation or sensitivity analyses for the preparation of new space missions and associated services.

Portfolio

AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD AOD

The CISAR algorithm

Rayference is specialized in the development of advanced algorithms based on the inversion of radiative transfer models. Rayference has developed the Combined Inversion of Surface and AeRosol (CISAR) algorithm which provides among others the surface reflectance, the single scattering albedo, phase function, fine/coarse mode ratio and the total column aerosol optical thickness. This algorithm is used in the context of the ESA Aerosol_cci project to retrieve hourly aerosol properties over land and sea surfaces from MSG/SEVIRI observations. The figure shows an example of hourly Aerosol Optical Thickness retrieval during a dust storm occuring on 27 - 28 May 2008 over the Mediterranean basin.

Radiation transfer modelling

Rayference proposes a suite of atmospheric and surface 1D and 3D radiative transfer models to perform sensitivity analysis, vicarious calibration, numerical algorithm design or look-up table generation.


Example of simulated 3D canopy

The 3D radiative transfer code Raytran is used to simulate Bidirectional Reflectance Factor (BRF) over complex scene which are described with a set of geometrical objects. Raytran also allows simulation of in situ observations.

Example of simulated 3D canopy

Example of 1D simulation

1D simulation over dense vegetated surface in the red spectral region in the principal plane at the top-of-atmosphere (blue curve), bottom of atmosphere (green curve) and without atmosphere (red curve).

Viewing direction ine the preincipal plane

Vicarious calibration

Rayference is using simulated top-of-atmosphere reflectance of desert sites to perform radiometer (cross-)calibration with an accuracy of about 3 to 5%.

Comparison of observations against simulated top-of-atmosphere reflectance over Libya4 (Govaerts et al, 2013)
Comparison of observations against simulated top-of-atmosphere reflectance over Libya4 (Govaerts et al, 2013)

Defining operational services

Rayference provides support and advices for setting up operational services based on the exploitation of space-based observations.

Projects

Development of a Deep Convective Cloud Reference Model for Vicarious Calibration

DCC Logo

The objective of this study is the development of a Deep Convective Cloud reference radiative model to increase the capabilities of the currently-in-use operational vicarious calibration system for reflective solar bands used at EUMETSAT for the calibration of the solar channels of the geostationary solar channels. The study focuses on i) the identification in satellite images of Deep Convective Cloud targets suitable for calibration purposes, ii) the definition of the microphysical properties of a standard deep convective cloud target to establish the vicarious reference signal and iii) a methodology to implement this new type of calibration.

On going

The S2RadVal (Sentinel-2 Radiometric Validation) project aims at developing and inter-comparing algorithms for validating the radiometry of Sentinel-2 Level-1 products.

On going

The objective of this study is to perform a joint retrieval of surface reflectance / aerosol properties from PROBA-V observations with the CISAR algorithm.

On going

S4 L2 Processor Component Development

S4 L2 Logo

Sentinel-4 Level-2 Processor Surface Reflectance Component Development.

On going

The aerosol_cci project aims at producing a set of global aerosol ECV products for one reference year from a set of European satellite instruments with substantially different characteristics. Rayference will be responsible for the generation of an aerosol data set from MSG/SEVIRI observations with the CISAR algorithm.

On going

The Fidelity and Uncertainty in Climate Data Records from Earth Observation (FIDUCEO) project will set new standards of accuracy and rigour in the generation of Fundamental Climate Data Records (FCDRs) and Climate Data Records (CDRs), with defensible uncertainty and stability information.

On going

Quality Assurance for Essential Climate Variables (QA4ECV) is a EC/FP7 research project aiming at showing how trustable assessments of satellite data quality can facilitate users in judging fitness-for-purpose of the ECV Climate Data Record and providing quality assured long-term Climate Data Records of several ECVs relevant for policy and climate change assessments. QA4ECV is paving the way of the future Copernicus Climate service.

On going

VNREDSAT

VNREDSAT results

The objective of this study is to support VITO with regard to the assessment of the 6SV Radiative Transfer Model performance for the vicarious radiometric calibration of a space-borne hyperspectral sensor in the 450-900nm spectral region.

Closed

3D Tropical Forest Reflectance modelling

Image Title

The objective of this project supported by the University Catholic of Louvain is to simulate top-of-canopy and top-of-atmosphere reflectance with a 3D radiative transfer model (Raytran) above a tropical forest to assess the impact of angular and atmospheric effects on satellite observations.

Closed

SURMACED

SURMACED results

This ESA project targets the concept development for the daily UVN surface reflectance map product for Sentinel-4 building on relevant heritage concepts.

Closed

PROBA-V Calibration

Proba-V results

The purpose of this project supported by VITO is to improve the characterization of bright desert surface radiative properties used for the vicarious calibration of PROBA-V.

Closed

About us

Yves Govaerts

Yves Govaerts has more than 20 years of experience in the design of algorithm for the operational retrieval of geophysical products. He has worked on the preparation of ATBDs, satellite data calibration, algorithm prototyping, product validation and documentation in the context of the retrieval of land surface and aerosol properties from geostationary observations. He has a solid experience in the development of 1D and 3D radiative transfer models and optimization methods. Finally, he has been involved in the generation of climate data record such as surface albedo from all available geostationary observations. He founded Rayference in 2013.

Yves Govaerts
Marta Luffarelli

Marta Luffarelli

Marta Luffarelli has a M.Sc in Electronic Engineering in 2016 from Sapienza University of Rome. Her studies focussed on remote sensing and telecommunication. She developed her master thesis at Telespazio VEGA Deutschland Gmbh in Darmstadt, Germany. During her stay at Telespazio she worked on the Sentinel-2 Level-2A processor, developing scientific software and gaining experience in scene classification and atmospheric correction. Marta joined Rayference in March 2016.

Cedric Goossens

Cedric Goossens

Cedric Goossens obtained a M.Sc. in Physics and Astronomy in 2013 from Ghent University and a M.Sc. in Space Studies in 2015 from the Catholic University of Leuven. His studies focussed on space and its scientific exploitation. After his studies, he worked as a software engineer for Spacebel on the development of spacecraft orbital and environnemental simulators. He joined Rayference in January 2017.

Contact